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This paper evaluates the causes of the 23% decline in 2030 US greenhouse gas
emissions forecasts between 2007 and 2011. Dynamic regression modeling predicts
that the Great Recession contributed to about 67% of the 2008�2009 emissions
decline, but then fell to about an 18% share for the 2030 emissions forecast. An
analysis of electricity generation forecasts show that switching from coal to gas
contributed only 6% to the total 2030 decline. In contrast, regulatory impact
assessments and policy analysis showed that state and federal policies were
responsible for 46% of the 2030 decline in emissions.

Keywords: regulatory impact analysis; economic growth; greenhouse gas emissions;
energy forecasting; United States

1. Introduction

The Unites States is the second largest emitter of greenhouse gases (GHGs) in the world.

Energy sector GHG emissions (excluding forestry and non-carbon dioxide gases) were

over 6 billion tons in 2012. The residential and commercial sector GHG emissions

accounted for about 20% each, industry about 27%, and transportation about 33% of

emissions. However, the US Environmental Protection Agency (EPA) announced that US

GHG emissions declined in 2012 to 10% below 2005 levels (EPA 2014). The

conventional wisdom has been that the decline in actual GHG emissions between 2007

and 2012 has been largely due to the effects of the Great Recession and less coal

generation in the electricity sector (Larson 2012; EPA 2014; Lu, Salovarra, and McElroy

2012). While historical emissions are important, energy and GHG forecasts are what

drive environmental planning and energy market investment decisions, so it is important

to be able to estimate changes in emissions due to business cycle fluctuations, long-term

structural changes, and the effects of policy actions. Robust analyses of these dramatic

changes in energy and environmental forecasts have been sorely lacking.

Long-term forecasts of US carbon dioxide emissions, as developed by the Annual

Energy Outlook (AEO) series of reports using the National Emissions Modeling System

(NEMS), have been declining every year for more than half a decade. Table 1 shows a

comparison of AEO emissions projections and supply and demand variables that suggest

that a number of additional factors have come into play besides the Great Recession

between the AEO 2011 and AEO 2007. While GDP fell by only 10%, forecasted GHGs
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drop by nearly a quarter, and demand for coal drops by almost a third in 2030. This is,

partly, due to the fact that coal prices in more recent forecasts were substantially higher,

and natural gas prices were slightly lower, than in previous forecasts. The 2011 forecast

also included large increases in the use of renewable energy sources by 2030.

Figure 1 shows annual forecasts for GHG emissions and GDP, our primary variables,

between the 2007 and 2011 AEO reference case projections for the 2007�2030 period.

GHG emissions dip markedly in 2008�2010 in the AEO 2011 data (which is mostly

historical data in the NEMS model), then resume an upward trend, but at a substantially

Table 1. Percent change in 2030 forecast between AEO 2007 and AEO 2011 reference cases
(negative values indicate a decline in 2011 forecast relative to 2007).

Variable 2030 Demand 2030

GHGs ¡23% GDP ($2005) ¡10%

Prices Industrial shipments/GDP ¡7%

Crude oil 87% Commercial demand ¡14%

Natural gas ¡12% Residential demand ¡17%

Coal 23% Industrial demand ¡8%

Supply Transport demand ¡22%

Total energy supply ¡15% Energy intensity metrics

Coal ¡31% Commercial (kBTU/ft2) ¡12%

Liquid fuels ¡22% Residential (kBTU/ft2) ¡10%

Natural gas ¡1% Industrial (kBTU/$) 1%

Nuclear ¡2% New commercial truck (MPG) 3%

Renewable electricity 29% New LDV (MPG) 23%

Renewable fuels 169%

Electricity sector

Coal-fired generation ¡36% Petroleum-fired generation ¡58%

Natural gas-fired generation 24% Renewables generation 35%

Nuclear generation ¡2%

Note: GHG D greenhouse gases, GDPD gross domestic product, kBTUD thousand British thermal units,
MPG D miles per gallon, LDV D light duty vehicle.

Figure 1. Comparisons of US GHGs versus GDP between AEO 2007 and 2011.

2 H.T. Nelson et al.
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lower growth rate (an average of 0.45% annually over 2011�2030) than in the AEO 2007

forecast (1.24% annually). By contrast, the average GDP growth rates in the two forecasts

are only modestly different (2.78%/year in AEO 2011, versus 2.86%/year in AEO 2007).

Thus, the main difference in the economic projections underlying the two AEO forecasts

is the inclusion of the Great Recession in the AEO 2009�2011 forecasts, which

essentially displaces GDP downwards by the equivalent of more than three years’

“normal” GDP growth for the entire forecast period.

The goal for this paper is two-fold. First, to estimate the unique impacts of declining

economic output on GHG emissions, we use econometric methods that control for other

relevant factors. We also estimate the changing impacts of GDP over time. Second, we

estimate the GHG impacts of major state and federal policies that were enacted over

2008�2011. To achieve these goals, the next section reviews the relevant literature on

energy forecasting and the relationship between GHGs and GDP. Section 3 describes our

methods and data. Section 4 presents the regression modeling and policy analysis results.

Section 5 discusses the limitations of the analysis and Section 6 presents implications and

conclusions.

2. A review of the relevant literature

The first step in informing the forecast decomposition was a selection of the critical

variables that have explained past biases between actual energy consumption and Energy

Information Administration (EIA) forecasts. Since 1996, the US EIA performs annual

retrospective reviews that evaluate the sources of error in its own forecasts compared to

realized energy outcomes. EIA (2010) notes, “The underlying reasons for deviations. . .
tended to be the same from one evaluation to the next.” Important sources of historical

forecasting errors were:

(1) Overestimating the growth rate of GDP,

(2) Errors in fossil fuel price forecasts,

(3) Overestimating energy intensity (5�6),

(4) Errors from not anticipating the effects of regulatory policy change.

The first three sources of error in past EIA analyses are explicitly included in our

regression modeling in Section 3. The effects of policy changes are the goal of our

regulatory analysis in Section 4.

The next step was a review of energy and GHG decomposition modeling in the

economics and statistics literature. This informed our econometric estimation technique

discussed below, as well as the variables we used in the model to assess the relationship

between GDP and GHG emissions in the AEO data. The existing research that is closest

to ours is Lady (2010) who uses regression analysis to evaluate the effects of how

changes in assumptions of the NEMS models affects residential and commercial energy

outcomes. The empirical research typically shows a positive and significant relationship

between energy and/or GHG emissions and economic growth (Apergis and Payne 2010;

Apergis et al. 2010; Huntington 2007). Other econometric analyses of economy-wide or

sectoral energy demand show mixed support for a direct link between GHG emissions, or

GDP growth, and low carbon sources of energy (Marrero 2010). Marques and Fuinhas

(2011) did not find any evidence of the switch of traditional sources to renewable ones as

a result of social responsibility associated with climate change and CO2 emissions.

Sadorsky (2009) used panel co-integration estimates to show that, in the long term,

increases in real GDP per capita and CO2 per capita were major drivers behind per capita

renewable energy consumption.

Journal of Environmental Planning and Management 3
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A final strand of research was used to inform the modeling around the structure of the

economy and GHG emissions. Authors have used both index decomposition methods and

input–output structural decomposition techniques to assess environmental outcomes

(Rose and Casler 1996; Ang 2007). For example, Casler and Rose (1998) investigated the

sources of change in CO2 emissions to show the effect of substitution within the energy

sector and between energy and other inputs as the leading causes of the decline in carbon

dioxide emissions. Also Ebohon and Ikeme (2006) tested for dynamic changes in CO2

emission intensity and energy intensity effects for two groups of countries. Zhou, Ang,

and Han (2010) showed that the total factor carbon emission performance of the countries

as a whole improved by 24% over the period and this was mainly driven by technological

progress.

3. Materials and methods

The US EIA publishes official energy statistics; therefore, we extracted our data from

each reference case in the AEO. The AEO is the official US government energy forecast,

and the NEMS model that generates the AEO has been extensively peer-reviewed over

the last several decades. The data for our regression analysis include calendar year

2007�2030 forecasts from the AEO reference cases that were prepared over the five

years beginning in 2007 and ending in 2011. The full dataset contains N D 120 and

comes from the five AEOs between 2007 and 2011, where each AEO panel contributes

24 periods between 2007 and 2030. Our analysis begins with the 2007 AEO rather than

earlier versions, so that the forecast periods match up (through 2030) and so that the use

of (identical) historical data in each of the regression panels (AEO reports) is limited.

Each year AEO represents an individual “panel” in the regression models. The natural

log of all variables was used to show elasticities and reduce non-linearity in the AEO

data. A constant of 1 was added to both sides of the regression equation (GHGs and

explanatory variables) prior to the log transformation, in order to maintain the correct

sign of each variable as some variables were not significantly different from zero

(Hamilton 2006, 128).

Following Marrero (2010) and Marques and Fuinhas (2011), we developed an

autoregressive distribute lag (ADL) regression model to predict GHG emissions that

includes a lagged value of GHG emissions as well as GDP. ADL models have a long

history in energy analysis (Bentzen and Engsted 2001). This dynamic panel data estimation

technique assumes that GHG emissions and GDP converge to a state of equilibrium over

time.

We use fixed effects in the ADL model to allow heterogeneity across panel units and

confine that heterogeneity to the intercept term, which is estimated for each panel. Each

panel (or fixed effect) represents a separate AEO year (2007 through 2011). Beck and

Katz (2009) argue for the appropriateness of fixed effects models with lagged dependent

variables when panels have 20 or more time periods (this analysis has T D 24 time

periods). The use of fixed effects and lagged dependent variables will have little

downward (Hurwicz) bias for the lagged dependent variable (Nickell 1981). Fixed effects

models have one major advantage over other estimation techniques that is important here.

The fixed effect model controls for all possible characteristics of each panel, thereby

reducing the risk of omitted variable bias in the research design (Allison 2005).

Violations of econometric assumptions were carefully tested that might affect our

inferences. Serial correlation occurs when the error terms in cases/observations are not

independently distributed (trended). Because the data are generated from the NEMS

4 H.T. Nelson et al.
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model forecasts, it is highly trended (nonrandom). To mitigate serial correlation, the

lagged values of GHG emissions and GDP were included in all ADL models. A test was

performed that indicated that the model’s error terms were independent of its lagged

values and all other variables, and that serial correlation was not significant. Wooldridge

(2010) states that it is valid to use fixed effects models in the absence of significant serial

correlation (286).

Heteroskedasticity, or non-constant variance in the data, was controlled for with

Huber/White/sandwich estimators. We used two-way cluster-robust standard errors as

proposed by Cameron, Gelbach, and Miller (2006). These errors are robust to arbitrary

within-group correlation clustered on AEO forecasts, and robust to arbitrary

contemporaneous cross-panel correlation clustered on year. Multicolinearity, or when the

predictor variables in a regression are highly correlated, is an issue in all models that

contain lagged values, as they are highly correlated with the current data. Ordinary least

squares (OLS) will still generate unbiased estimators in the presence of multicolinearity,

but can increase variance, and covariances may potentially lead to rejecting otherwise

significant variables. As a robustness test, the models were also estimated with

differenced energy price data and the results were largely similar (not shown), giving us

confidence in the models’ robustness with regard to multicolinearity. A variance inflation

test was performed with results below 5, indicating no significant problem with

multicolinearity.

3.1. Economy-wide regression model

Our overall goal for the regression analysis was to identify GHG emissions impacts

resulting from changes in forecasts of economic activity while controlling for other

relevant factors. We are also interested in how the impact of GDP changes over time. The

economy-wide supply and demand model that resulted includes GDP as a measure of

energy demand, real fossil fuel prices, and primary energy supply shares for fossil fuels,

nuclear power, and renewable energy sources, as well as sectoral demand shares

(residential, commercial, industrial, and transport).

We selected these variables based on our review of the EIA retrospective analyses and

the energy econometrics literature detailed in Section 2. Following the methods of Casler

and Rose (1998), we also included a measure of the industrial share of the economy to

control for changes in the energy demand mix caused by shifts in economic structure.

The equation for the economy-wide model is

GHGDb0 Cb1GHGt¡ 1 Cb2GDPCb3GDPt¡ 1 Cb4
Ind
GDP

Cb5oilCb6NGCb7coal

Cb8fuels%Cb9NG%Cb10nuclear %Cb11renewable %Cb12commercial %

Cb13residential %Cb14tranport %C e;
(1)

where GHG D greenhouse gas emissions (million metric tons) carbon dioxide

equivalents, GDP D gross domestic product (billions of chained 2005 dollars), Ind/GDP

D industrial shipments/GDP, oil D crude oil price in US dollars, NG D natural gas price

in US dollars, coal D coal price in US dollars, fuels% D liquid fuel supply share of total

energy supply, NG% D natural gas supply share of total energy supply, nuclear% D
nuclear energy share of total energy supply, renewables% D renewable energy share of

total energy supply, commercial% D commercial energy demand as share of total

demand, residential% D residential energy demand share of total demand, transport% D
transportation energy demand share of total demand, e D stochastic error term.

Journal of Environmental Planning and Management 5
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3.2. Sectoral regression models

In this section, we increase the resolution of the econometric model by examining the

energy-consuming sectors instead of pooling them all together in the economy-wide

model. This analysis identifies variables that are substantive and significant at the sector

level but not at the aggregate level.

In the buildings and industry model, we drop primary energy supply share variables

and instead focus on the supply shares (by energy source) in electricity generation, which

has been considerably revised between the 2007 and 2011 versions of the AEO forecasts.

We also include sectoral energy intensity metrics to investigate increased energy

efficiency in delivering energy services such as heating, cooling, lighting, and industrial

process energy. The equation for the buildings and industry model is

GHGDb0 Cb1GHGt¡ 1 Cb1GDPCb3GDPt¡ 1 Cb4
Ind
GDP

Cb5oilCb6NGCb7coal

Cb8NG gen%Cb9renewable gen%Cb10nuclear gen%Cb11residential

Cb12commercialCb13industrial%C e;
(2)

where GHG D greenhouse gas emissions (million metric tons) carbon dioxide

equivalents, GDP D gross domestic product (billions of chained 2005 dollars), Ind/GDP

D industrial shipments/GDP, Oil D crude oil price in US dollars, NG D natural gas price

in US dollars, Coal D coal price, NG gen% D natural gas supply share of total electricity

generation, renewable gen% D renewable energy supply share of total electricity

generation, nuclear gen% D nuclear energy share of total energy electricity generation,

residential D residential energy intensity (kBTU/ft2), commercial D commercial energy

intensity (kBTU/ft2), industrial D industrial energy intensity (kBTU/$ shipments), e D
stochastic error term.The equation for the transport model is:

GHGD b0 C b1GHGt¡ 1 C b2GDPC b3GDPt¡ 1 C b4

Ind

GDP
Cb5oil

C b6RFS%C b7LDVC b8truckC e; (3)

where GHG D greenhouse gas emissions (million metric tons) carbon dioxide

equivalents, GDP D gross domestic product (billions of chained 2005 dollars), Ind/GDP

D industrial shipments/GDP, oil D crude oil price, RFS% D federal renewable fuel

standard requirement, LDV D light duty vehicle miles per gallon (MPG) standard, truck

D commercial truck MPG standard, e D stochastic error term.

4. Results

Our results are split into two sections: regression results and the policy analysis results.

The AEO reference case forecasts for year 2030 GDP declined by only 10% between the

2007 and 2011 forecasts, as shown in Figure 1. Regression analysis was used as

described above to estimate how much of the forecasted change in GHG emissions in the

reference case AEO 2007 and 2011 forecasts can be attributed to the impacts of the Great

Recession and to (slightly) slower subsequent economic growth assumptions. The AEO

projected growth rate in GDP is a trend projection, that does not account for business

cycles. The regression results allow us to estimate the effects of declining economic

activity on GHG emissions, controlling for associated changes in the GHG intensity of

6 H.T. Nelson et al.
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electricity generation sources. As robustness tests, we also examine the effects of GDP on

GHGs in the short term (2007�2020), and without prices in the ADL model.

Table 2 shows the regression results. The log–log model shows the percent change in

GHGs for a one percent change in the predictor variables. The coefficient of

Table 2. Economy-wide regression results for GHG emissions.

Base model Alternate A Alternate B

Variables (logged) 2007�2030 2007�2020 No prices

Lagged GHGs 0.67��� 0.50�� 0.75���

(0.000) (0.016) (0.000)

GDP 0.94�� 0.88��� 0.92��

(0.017) (0.009) (0.026)

Lagged GDP ¡0.81�� ¡0.73��� ¡0.83��

(0.024) (0.007) (0.032)

Industrial shipments/GDP ¡0.04 0.12 ¡0.11�

(0.601) (0.615) (0.093)

Crude oil price ¡0.02 ¡0.04

(0.294) (0.174)

Natural gas price ¡0.00 0.02

(0.987) (0.199)

Coal price ¡0.07� ¡0.19

(0.095) (0.174)

Liquid fuels supply (%) 0.31 ¡0.24 0.41���

(0.120) (0.134) (0.004)

Natural gas supply (%) ¡0.41��� 0.31 ¡0.35���

(0.004) (0.133) (0.008)

Nuclear supply (%) ¡0.44 ¡0.35 ¡0.01

(0.100) (0.639) (0.842)

Renewables supply (%) ¡0.88� ¡0.72 ¡0.82��

(0.052) (0.120) (0.046)

Commercial energy demand (%) ¡0.33 ¡0.28 ¡0.11

(0.191) (0.267) (0.612)

Residential energy demand (%) 0.34 0.39 0.27

(0.574) (0.518) (0.517)

Transportation energy demand (%) ¡0.05 ¡0.26 ¡0.03

(0.883) (0.615) (0.905)

Constant 1.86��� 3.20��� 1.31���

(0.005) (0.007) (0.004)

Observations 118 68 118

R-squared 0.990 0.962 0.988

Number of AEO years 5 5 5

Fixed effects Yes Yes Yes

Notes: Robust p-values in parentheses ���p < 0.01, ��p < 0.05, �p < 0.1.
The full dataset that contains N D 120 comes from the five AEOs between 2007 and 2011, where each AEO
panel contributes 24 periods between 2007 and 2030. The regression results in Tables 2 and 4 show 118
observations, as the 2007 observations from the 2010 and 2011 AEO forecasts are dropped. Alternative A in
Table 2 shows 68 observations because of the shorter time period: 14 £ 5 ¡ 2 D 68.
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determination (R2) for the base ADL model explains over 99% of the variation in GHG

emissions, which is expected with the lagged values of GHGs and GDP in the model as

explanatory variables. The F-statistics (not shown) indicate that the combined effects of

the explanatory variables are statistically different from zero.

National income (using GDP as a proxy) is used as an indicator of total energy

demand. Energy demand in the AEO that leads to GHGs is parameterized in the models

by GDP that includes industrial production, housing starts, and commercial building floor

space. Recall that the goal of the regression modeling is to partition out the change in

GHGs that is explained by lower GDP, while controlling for price and supply variables in

the AEO forecasts. Following the methods of Sadorsky (2009) and Marques and Fuinhas

(2011), fossil fuel prices are included in the base analysis. Our results indicate that higher

coal prices are weakly related to lower GHG emissions. On the energy supply side,

higher renewable energy and natural gas shares of primary energy supply were identified

as statistically significant predictors of reduced GHG emissions. The negative coefficient

for renewable energy supply is the largest of the supply variables, indicating the larger

GHG reductions from implementation of renewable energy as compared to nuclear

energy and natural gas.

The primary energy supply shares in Table 2 use coal as a base category in the model.

This means that coal supply share was excluded to avoid perfect correlation between the

variables and the other variables can be interpreted relative to coal. The reason that the

nuclear supply share was not significant is likely due to the lack of variation in nuclear

supply over the forecast period; the AEO forecast includes very limited changes in

nuclear generation. Appendix 1 shows the descriptive statistics for the data and indicates

that there is very limited variance in the fuel and sector share forecasts in the AEO

reference cases. This is one potential explanation for the lack of significance for these

important variables, and needs to be further examined in future research that decomposes

energy forecasts.

On the demand side, the sectoral variables used industrial demand as a base category.

As a result, an increase in commercial and transport demand relative to industrial demand

predicts reductions in GHG emissions, but none of the effects were significant from zero.

Across a range of econometric estimations, the most consistent predictor of higher

GHG emissions on the demand side was GDP. Economy-wide demand for energy

services is a function of economic activity and income. Lower incomes reduce demand

for electricity for appliances, for gas and electricity used for building heating and

cooling, for diesel fuel used for mining and construction, for gasoline and other fuels

powering vehicle travel, and for many other uses of energy throughout the economy. For

example, in the building sector, growth in housing and commercial floor space is in large

part a function of income (measured as GDP) and population growth, so using GDP as an

explanatory variable should capture the majority of variance in demand growth between

forecasts.

The econometric methodology described above generates predictions of the unique

contribution of changes in GDP in the model toward changes in GHG emissions,

controlling for the effects of the other variables. The short-run (immediate) effect of a

one percent (1.0%) decline in GDP results in a 0.94% decline in GHG emissions. For

example, the 2.6% decline in 2008 GDP forecasts between the 2007 and 2011 AEO

reports explains about 66% of the 3.7% decline in GHGs [(0.94 £ 2.6) D 2.4)/3.7].

The long-run effect of GDP on GHG emissions can be calculated from the coefficients

of lagged GHG emissions, GDP, and lagged GDP, and is estimated by
b0 C b1
1¡’

x, where

b0 D GDPt; b1 D GDPt¡1, and ’ is the lagged GHG coefficient. In this case, the long-run

8 H.T. Nelson et al.
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equilibrium is equal to (0.94¡0.82)/(1¡0.67) D 0.36 or 36%. Put another way, the 10%

decline in 2030 GDP forecasts between the 2007 and 2011 AEO forecasts is predicted to

result in a »4% decline in GHG emissions. Instead, GHG emissions declined by 23%,

meaning that multiple other factors are required to explain the long-term GHG decline.

When the long-run equilibrium is disturbed during a recession, the rate of correction

for the GHGs and GDP back to their equilibrium can be estimated as (1 ¡ lagged GHG

emissions coefficient). Assuming a lagged GHG coefficient of 0.67% means that the

speed of adjustment is relatively slow at 0.33% per year. We calculated each year’s GDP

coefficient based on the model’s impulse-response function for each year following the

beginning of the recession in 2008 to better estimate the effect of GDP on GHGs. For

each year following 2008, the response function was estimated as ’(t ¡ 1) £ (b1 C wb0)

and was subtracted from the prior year’s coefficient. By 2010, about half of the

adjustment to the long-term equilibrium had occurred. Table 3 shows the estimated GDP

coefficient for selected years.

Part of the explanation is because the short-run (immediate) relationship between

GDP and GHG emissions (0.94% from Base model in Table 3) is over two times greater

than the long-run multiplier of 0.36. The short-term effect of GDP is larger than long-

term effect because of long-term declines in the energy intensity of the economy, which

in turn is due to autonomous energy efficiency improvements and/or structural changes in

the economy away from energy-intensive sectors (Webster, Paltsev, and Reilly 2008).

The 0.36 long-run GHG income elasticity calculated above is related to the energy

income elasticity. The GHG elasticity estimate is lower than historical income elasticities

for the US and OECD countries which have been estimated between 0.57 and 0.64,

respectively (Mahadevan and Asafu-Adjaye 2007; Gately and Huntington 2002).

However, energy income elasticities do not account for changes in GHG intensity, such

as switching from coal to gas or renewable energy sources, which, as we discuss below,

contribute significantly to US GHG reductions in the NEMS model’s forecasts.

Using different starting and ending dates for the analysis did change the GDP

coefficients substantively. Alternate A in Table 2 shows only the period of the recession

and its aftermath (2007�2020). The GDP short-term coefficient was reduced to 0.88%

while the long-run effect declined to 0.30%, which was derived as ((0.88¡0.73)/

(1¡0.50)). We also tested the effects of GDP on GHG emissions in the economy-wide

model without prices, as shown in Alternate B in Table 2. This more parsimonious model

specification eliminates concerns that energy prices are endogenous to supply and

demand variables (and GHGs), and shows that without price variables the effects of GDP

are slightly lower at 0.36, derived as ((0.92¡0.83)/(1¡0.75)). This model does predict

significantly lower GHG emissions with higher natural gas and renewables supply shares.

Conversely, a higher liquid fuel share is predicted to result in higher GHG emissions.1

The commercial, residential, and transportation demand shares are not significant. In an

unreported regression, we trimmed the Base model to exclude the demand shares. The

results were largely unchanged from the Base model results in Table 2.

Table 3. GDP coefficient over time.

2008 2009 2010 2015 2020 2030

% D in GHGs for 1% D in GDP 0.940 0.760 0.639 0.427 0.398 0.394

Journal of Environmental Planning and Management 9
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4.1. Sectoral results

These economy-wide results allowed us to further refine our analysis at the sectoral level

for buildings (residential and commercial/institutional sectors) and industry as well as for

transportation. Table 4 shows that the short-run relationship between GDP and GHG

Table 4. Sectoral regression results (2007�2030).

Variables (logged) Buildings and industry Transport

Lagged GHGs 0.15 0.60���

(0.182) (0.000)

GDP 0.93��� 0.86���

(0.001) (0.001)

Lagged GDP ¡0.44��� ¡0.64���

(0.005) (0.001)

Industrial shipments/GDP 0.40��� 0.21

(0.001) (0.171)

Crude oil price ¡0.00 ¡0.04��

(0.649) (0.025)

Natural gas price ¡0.01

(0.386)

Coal price 0.03

(0.476)

Natural gas generation (%) ¡0.36���

(0.007)

Renewables generation (%) ¡0.58���

(0.007)

Nuclear generation (%) ¡0.65���

(0.009)

Residential energy intensity (kBTU/ft2) 0.37���

(0.007)

Commercial energy intensity (kBTU/ft2) 0.12

(0.198)

Industrial energy intensity (kBTU/$ shipments) 0.20���

(0.000)

Renewable fuels (%) ¡0.36���

(0.003)

Light duty vehicle (MPG) ¡0.00���

(0.006)

Commercial truck (MPG) 0.00

(0.768)

Constant 0.15 1.11���

(0.780) (0.002)

Observations 118 118

R-squared 0.99 0.99

Number of AEO years 5 5

Fixed effects Yes Yes

Notes: Robust p-values in parentheses.
���p < 0.01, ��p< 0.05, �p < 0.1.

10 H.T. Nelson et al.
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emissions is largely unchanged from the results found in the economy-wide model (0.94)

compared to the Buildings and Industry model (0.93) and slightly lower in the Transport

model (0.86).

The sectoral models show the robustness of GDP coefficient estimated in previous

models. The industrial share of GDP is marginally significant, with a much larger

coefficient for buildings and industry. Higher natural gas and coal prices predict lower

GHG emissions in the buildings and industry sectors. We find evidence that fuel

switching away from coal in the electricity sector is also an important source of GHG

emissions reductions. We estimate the impacts of higher relative coal prices in the

electricity generation sector in our fuel switching analysis below. Finally, two of the end-

use intensity measures are significant, with residential energy intensity having a much

larger effect on GHG emissions than industrial intensity.

In the transportation model in Table 4, higher crude oil prices predict lower GHG

emissions, as does a greater share of renewable fuel use. However, outside of the

transportation sector, we found little effect on GHG emissions from higher oil prices

while controlling for demand reductions from lower GDP (Table 3). This result is

consistent with other recent energy studies (Sadorsky 2009). Light-duty vehicle

efficiency (MPG) requirements are associated with reduced GHG emissions, while

commercial truck MPG requirements are not.

Table 3 summarizes the first goal of this paper, and shows that the relationship

between GDP and GHG is large right after the Great Recession, but declines over the

long term in the AEO forecasts.

4.2. Policy analysis results

Recall from Section 4 above that the 10% decline in 2030 GDP forecasts between the

2007 and 2011 AEO forecasts is predicted to result in a »4% decline in GHG emissions.

Instead, GHG emissions declined by 23%, meaning that multiple other factors are

required to explain the long-term GHG decline. As a result, we turn to the second

objective of the paper. Recall from Section 2 that one of the consistent sources of errors

in AEO forecasts were regulatory policies. We employ policy analytical methods to

measure what else is going on in the AEO forecasts that might plausibly explain the

balance of the GHG declines. The effects of major federal and state policy actions that

occurred between 2008 and 2011 were analyzed using the results of existing studies, or

were calculated exogenously based on AEO data or other data sources. The EIA rarely

provides comparative static analyses of the effects of major legislation on reference case

projections, with the exception of the AEO’s explicit consideration of the impacts of the

American Recovery and Reinvestment Act (ARRA 2009). As a result, external analyses

from the EIA, the US EPA, and other studies, as well as our own analysis of EIA data,

were used to estimate GHG impacts.

We use policy analysis to assess the effects of various policy and market factors in

explaining GHG emissions: electricity generation, building energy intensity, industrial

energy efficiency, as well as transportation policies. The effects of the policy and market

variables were included (1) because they were explicitly modeled in the AEO reference

cases within the NEMS model, (2) because they are typically included in the energy

economics literature as described above (Marques and Fuinhas 2011; Marrero 2010; Ang

2007; Huntington 2007; Casler and Rose 1998) or (3) because they have been selected by

the EIA (2011) as important sources of forecasting error in previous versions of the AEO.

To reduce the risk of double-counting GHG reductions, we purposefully modeled the

Journal of Environmental Planning and Management 11
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GHG impacts taking into account the lower future economic activity and GDP growth in

the 2011 AEO forecast.

4.2.1. Electricity generation

Forecasted 2030 GHG emissions from the electricity sector fell by 27% between the AEO

2007 and 2011 forecasts. The change is the result of several inter-related factors. Chief

among these was lower electricity demand (about 15% lower in 2030 in AEO 2011)

resulting from lower economic activity and improvements in energy efficiency. Another key

factor was a significant reduction in coal-fired generation due to higher coal prices and

lower natural gas prices in the later AEO reference cases. Lower natural gas prices resulted

in gas generation replacing coal generation during the 2009 Great Recession (Lu, Salovarra,

and McElroy 2012). The NEMS power sector module is a least-cost optimization model, so

the interaction between the declines in natural gas prices, along with higher coal prices,

results in forecasted fuel switching from coal to gas in the power sector.

4.2.1.1. Electricity generation sector. The electricity generation sector accounts for a

substantial fraction of the United States’ GHG emissions � a total of 2.4 billion (metric)

tons of carbon dioxide (CO2) as of 2007, more than 40% of national CO2 emissions in

that year. The 2007 version of the AEO reference case shows total electricity sector

emissions in 2030 of over 3.3 billion tons of CO2, while the AEO 2011 forecasts

emissions of over 2.4 billion tons. As such, the difference in electricity sector emissions

between AEO 2007 and AEO 2011 in 2030 � about 900 million tons � accounts for very

close to half of the overall difference in 2030 forecasted emissions.

Here we identify which portions of the differences in CO2 emissions that appear

between the two electricity sector forecasts stem from changes in economic conditions,

assumptions about GHG-related policies, and changes from other factors such as changes

in relative fuel prices. The decomposition of the drivers of the different electricity sector

CO2 emissions between the two forecasts is made more challenging because of a number

of trends which include:

� Demand: 2030 electricity demand fell from 5800 terawatt hours (TWh) to slightly

more than 4900 TWh between the 2007 and 2011 forecasts. Key drivers include the

impacts on electricity demand in the recession of 2007�2009, reductions in

electricity demand as a result of energy efficiency programs and policies, as well as

differences in assumptions about naturally occurring improvements in end-use

efficiency.

� Coal-to-gas fuel switching: a 35% reduction in the generation of electricity from

coal, along with a 24% increase in the generation of electricity from natural gas

between 2007 and 2011.

� Coal generation emissions factor (tons CO2/megawatt hour): there is a decrease

over time in the CO2 emission factor for coal-fired generation, but the trend is quite

different in the two forecasts. In AEO 2007, the emission factor declines by about

9% from 2012 to 2030, while in AEO 2011, the emission factor declines by less

than 4% over the same period. The reason for this difference is likely that in AEO

2011, a larger fraction of the coal-fired capacity operating in 2030 would be of

older, less efficient plants with higher emission rates. In contrast, the AEO 2007

forecast, with its higher levels of coal-fired generation, required the construction of

more newer, higher efficiency plants.

12 H.T. Nelson et al.
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� Renewable generation: by 2030, AEO 2011 forecasts 35%, or 184 TWh, more

renewable generation than does AEO 2007. This increase can be attributed to

the federal production and investment tax credits (in the short term), as well as state

policy actions and market forces in the long term. The additional use of renewable

electricity generation is estimated to explain a total of just over 7% of the reduction

in overall GHG emissions between AEO 2007 and AEO 2011 in both 2020 and

2030.

To separate the effects of state actions from other influences on AEO renewable

energy forecasts, we performed an analysis of state Renewable Portfolio Standard (RPS)

legislation included in the AEO reference case forecasts. The EIA (2008) posits, “If

recent trends continue, the state RPS programs will exert growing influence over the

national energy mix.” Using EIA reports, we estimated the share of new renewable

electricity attributable to state RPS activity as 75% of the additional deployment of

renewable generation by 2030. Based on this assumption, about 5.5% of the 7% total

reduction from increased renewable energy deployment (above) is estimated to result

from state RPS fulfillment, with the balance of 1.5% developed outside the mandates of

state RPS programs.

4.2.2. Building energy intensity

AEO estimates between 2007 and 2011 of residential and commercial energy intensities

(measured as consumption of energy per square foot of building floor space) for 2030

declined by 10% and 12%, respectively. The EIA (2010) notes, “Energy intensity has

been the concept most often overestimated” (7). The NEMS model assumptions for

technological improvements have become more optimistic over the years, and have also

started to include an element of efficiency improvement due to learning through

experience “in more recent projections” (EIA 2010, 6). We estimate the effects of

improved energy intensity in later AEO versions by analyzing the decline in energy

consumption per square foot in the building sectors. Some of the improvements in energy

intensity are due to endogenous improvements in device efficiencies (for example,

ongoing replacement of incandescent bulbs with compact fluorescent lamps, which are

three or more times as efficient in producing light from electricity) and some to policy

interventions.

The effects of the changes in energy intensities on GHG emissions are estimated as

the annual percentage difference in end-use efficiency between the 2007 and 2011

reference cases, multiplied by sectoral 2007 GHG emissions. From this estimate of a

difference of about 350 MTCO2 in 2030 between the two forecasts, we subtract the GHG

impacts of state and federal efficiency-related policies as estimated below. The EIA

(2009a) notes that recent trends in state energy intensity are taken into account in energy

projections, so AS to avoid double counting energy and GHG emission reductions, we

assume that only half the net intensity difference is due to technological change, or

approximately 70 MTCO2 in 2030. The assumption of one half of intensity differences

being attributable to technological change is used for lack of an empirical estimate of this

parameter.

The effects of the Energy Independence and Security Act (EISA) of 2007 were also

included. The energy impacts from EISA were modeled in AEO 2008 and 2009 for the

provisions in EISA that established specific tax credits, incentives, and standards. We

updated a report from the American Council for an Energy-Efficient Economy (ACEEE

Journal of Environmental Planning and Management 13
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2008) that estimated the electricity and fuel savings from the EISA. We converted the

energy savings into GHG using relevant GHG emissions factors. Also, the ACEEE

(2008) estimates were updated for this analysis to reflect the lower growth rates in

electricity demand since 2008. Based on the revised analysis, we estimate 74 MTCO2e in

GHG reductions in the AEO 2011 forecast, relative to AEO 2007, by 2030 can be

attributed to EISA (2007) Title 3 provisions.

The effects of the ARRA were also included. The AEO 2009 analyzed the effects of

ARRA. ARRA allocated $3.1 billion for states to implement or enhance energy efficiency

programs. In this analysis, we include only weatherization and building efficiency

improvements that the EIA estimated reduced heating and cooling consumption by 1.7%

and 3.4%, respectively, in 2030. For this analysis, the AEO 2009 estimates of ARRA

demand reductions were reduced by an average of about 5%, which reflects the estimated

decline in building energy demand between the 2009 and 2011 AEO forecasts.

Because states have primary authority for regulating demand-side management

programs, improvements in energy efficiency can be attributed to state policy actions.

ACEEE (2011) publishes an analysis of energy efficiency performance standards enacted

by the states. This information, along with US state energy data published by EIA (2011),

allowed us to estimate the GHG reductions associated with the incremental annual

reductions from new electricity and natural gas demand-side management programs.

ACEEE (2011) showed a mean electric efficiency target of 0.84% of sales from 28 states

with efficiency standards. These targets ranged from 0.10% of sales in Texas to 2.00% of

sales in Massachusetts, Illinois, and Rhode Island. Mean gas efficiency targets were

considerably lower at 0.50% of sales. We estimated state energy efficiency electricity and

natural gas savings of 0.52% and 0.15% of sales nationwide, respectively, assuming that

the 28 states represent 61% of electricity sales and 33% of natural gas sales from EIA

(2011) energy sales data.

These values were used for all subsequent forecast years, which conservatively

assume no expansion of efficiency standards either in policy goals or geographic

expansion to states that lacked existing standards as of 2011. To convert electricity

savings targets to GHG emissions savings, we assumed an avoided electricity CO2

intensity of 0.51 tons/MWh through 2015, effectively assuming that energy efficiency

here results in reduced generation by peaking natural gas units, and for 2016�2030, we

assumed that efficiency investments displace the use of new natural gas combined-cycle

combustion turbines with average heat rates of 6800 Btu/kWh, resulting in avoided

emissions of 0.36 tons/MWh. These too are relatively conservative assumptions, as

energy efficiency will typically displace a mixture of base load and peaking generation,

and thus could probably be expected to reduce coal-fired and gas-fired generation,

resulting in higher avoided emission factors on average. We assumed an 8% average rate

of transmission and distribution losses, which are avoided by energy-efficiency measures

applied at the point of electricity end-use.

4.2.3. Industrial energy efficiency

Industrial kBTU/$GDP dropped considerably in the short term (2008�2014) in the 2011

AEO forecast compared to 2007, indicating that the drop was due to a continued move

away from energy-intensive manufacturing rather than endogenous efficiency

improvements. As a result, we include only GHG reductions associated with energy

intensity improvements from buildings and not industrial energy efficiency

improvements. The net effect of not including industrial energy intensity improvements

equates to these effects being included in the “unattributed” sources.

14 H.T. Nelson et al.
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4.2.4. Transportation policies regulatory impact assessments

Major federal transportation policies are analyzed as transport-related GHGs emissions in

2030 dropped by 26% between the 2007 and 2011 AEO reference case forecasts.

Demand reductions contributed to the drop, as forecasts for vehicle miles traveled

dropped by 11%. Several significant federal policy actions, however, were enacted over

the period, and these help to explain the remainder of the dramatic drop in transport-

related GHG emissions forecasts.

The Corporate Average Fuel Economy (CAF�E) standards for the AEO reference cases

were updated several times between 2007 and 2011. EISA (2007) Title 1 for vehicle

efficiency standards and credit trading are simulated in the AEO 2008, and modeling of

subsequent legislation was updated in AEO 2009 and 2010. The Obama Administration’s

2009 CAF�E standards are primarily included in AEO 2010 modeling. For vehicle model

years 2016 through 2020, fuel economy standards are assumed to increase in stringency

to achieve 35 MPG on average for the new light-duty vehicle fleet in 2020, after which

the standards remain constant. We updated the emissions impacts of federal CAF�E
standards for this analysis as estimated in the EPA’s CAF�E Regulatory Impact Analysis

(2010a). The EPA estimated direct annual GHG emissions reductions for the policy of

about 15 MTCO2 in 2012, rising to over 273 MTCO2 by 2030. To account for slower

economic growth, the effects of CAF�E standards in the EPA’s Impact Analysis were reduced

by the percentage difference between projected new vehicle sales in AEO 2011 relative to

the 2009 AEO updated reference case, which averaged about 3.4% over the 2008�2030

period. Thus, GHG reductions from enhanced CAF�E standards between the AEO 2007 and

2011 forecasts are estimated at 130 MTCO2 in 2020 and 270 MTCO2 in 2030.

Renewable transportation fuels were also modeled as they were included in the AEO

2008 reference case under EISA (2007) Title 2 and updated in later AEO versions. The

impacts of the first renewable fuels standard (RFS1) under EPACT 2005 were included in

the AEO 2007 and are thus not modeled as a difference between AEO 2007 and 2011

forecasts. We estimate the impacts of the EISA (2007) and other policy changes to the

RFS using the US EPA RFS Regulatory Impact Analysis (2010b). The GHG impacts

from the 30.5 billion gallons of renewable transport fuels estimated for 2022 in the EPA

Impact Analysis are incremental to the 2007 AEO baseline of 13.05 billion gallons of

biofuels. We assume that biodiesel and ethanol incentives under the Energy Improvement

and Extension Act of 2008 and other relevant legislation are also subsumed in the EPA

renewable fuel share analysis.

Table 5 integrates the GHG reductions MMTCO2e from the policy analysis section

with the drop in GHGs predicted from Table 3. To convert the regression results into

GHGs, we multiplied the estimated GDP coefficient by the %GDP forecasting error by

the 2007 AEO GHG forecast in each year. For example, 2030 GHG emissions

attributable to the drop in GDP forecasts, controlling for all other variables in the model

including prices, is 18% of the 2007 AEO forecasted emissions for 2030 equal to 323

MMTCO2e (0.394 £ 0.103 £ 7950 MMTCO2e). This is larger than the estimated 2030

GHG reductions from state energy efficiency policies at 279 MMTCO2e, and Federal

CAF�E standard reductions of 272 MMTCO2e.

Figure 2 builds on Table 5 by showing a time-series of the effects of the sources of

GHG declines over the 2007�2030 period, utilizing the regression results from the Base

model in Tables 2 and 3, the results from the regulatory impact analyses, the electricity

sector fuel switching analysis, and the energy efficiency policy analyses. The graph is

bounded at the top by the 2007 GHG forecast and at the bottom by the 2011 GHG

forecast.
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Table 5. Contribution of the sources of GHG emissions declines.

Source 2020 2030 Source

Economy (demand) 22% 18% Tables 2 and 3 for Base model

Electricity fuel switching 6% 6% Section 4.2.1 and Online Appendix

State electric RPS 6% 5% Section 4.2.1 and EIA (2008, 2009a)

Non-RPS electric renewables 2% 2% Section 4.2.1 and US EIA reports

Transport RFS 6% 5% Section 4.2.4 and EPA (2010b)

Transport CAF�E 11% 15% Section 4.2.4 and EPA (2010a)

Building codes and ARRA
efficiency

2% 2% Section 4.4.2 and EIA (2009b)

EISA (2007) 4% 4% Section 4.4.2 and ACEEE (2008)

State energy efficiency portfolio
standards

12% 15% Section 4.4.2 and ACEEE (2011),
EIA (2011)

Autonomous energy efficiency
(Buildings)

3% 4% Section 4.4.2 and Table 4
(buildings)

Unattributed sources of decline 27% 26% Unattributed reductions from above
analyses

Figure 2. Time series of relative contributions to declines in AEO forecasts of US GHG emissions.
(See online colour version for full interpretation.)
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5. Discussion

Combined, the ADL regression modeling and the policy analysis help to identify the

factors that explain why GHG emissions forecasts dropped 23%, but GDP forecasts fell

only 10% between 2007 and 2011. Each of the analyses provides a unique part of the

picture. However, there are also declines in GHG emissions in the AEO forecasts that

we do not ascribe sources to. These unattributed declines are estimated at about 26% of

the total decline in 2030. This category includes policy actions and market outcomes in

the NEMS reference cases that go beyond the changes in GDP and the policy analysis

present above. First, the economy-wide effects of changes in relative prices are difficult

to estimate because they integrate supply and demand. The unattributed category

includes higher oil prices, which were shown to be important in the transportation sector,

but not in economy-wide models. While we do estimate the effects of coal-to-gas fuel

switching in the electricity sector, we do not partition out the GHG effects of relative

price changes of direct fuel use in the buildings and industrial sectors (Huntington 2007).

The unattributed sources of decline in forecasts demonstrate that our analysis is not

overly deterministic in that it does not attribute the entire decline in GHG emissions

between forecasts to specific sources, and also implies that emission declines have not

been double-counted in the analysis.

Airborne emissions control policies covering non-GHG pollutants are not included in

the analysis and are thus also in the unattributed category. Other simulations, including

EPRI (2012), show that airborne emissions policies (not including CO2) are likely to

cause significant retrofits and retirements of existing coal generation through 2035, which

will likely result in large GHG reductions. In sum, though it appears that airborne

emissions policies may have contributed to the decline in coal generation forecasts

between the 2007 and 2011 AEO reference cases, estimating the magnitude of their

impact is difficult outside of the NEMS model and it is not clear how well, or if at all,

these policies have been implemented in the AEO forecasts.

Several other policies have been included in AEO reference cases, but we have not

separated them out in this decomposition analysis because their impacts on GHG emissions

forecasts are small. These include the Regional Greenhouse Gas Initiative as well as

California Assembly Bill 32 (AB 32), the Global Warming Solutions Act of 2006. State-level

appliance standards were also not analyzed, as they are typically responsible for a much

smaller share of energy efficiency savings than federal standards, and are also subsumed in

our estimate of other energy efficiency savings. Other policies are not quantified due to a lack

of data about how the effects of these policies are included (or not) in the AEO forecasts.

5.1. Limitations of the analysis

With the exception of the estimates for the effects of GDP on GHG emissions, each of the

variables attributed to GHG declines in this analysis have been performed on a stand-

alone basis. However, there could be some interactions between the policies. For

example, energy efficiency improvements can also increase consumption as the cost of

energy services declines. This “rebound” effect could cause the energy efficiency

variables to overestimate their importance in explaining the decline in GHG emissions,

but estimating the rebound effect in forecasts is difficult. Similarly, the effect of

combining renewable and energy efficiency policies may result in lower emissions

reductions for the combined policies together relative to results indicated by stand-alone

analyses, because the renewable policies may not be as effective at reducing GHG

emissions under conditions of lower energy demand.

Journal of Environmental Planning and Management 17
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However, we are not concerned about “real-life” rebound effects of effective policies,

just whether or not the interactions are accounted for in the NEMS model. If they are,

then GHG emission declines are smaller than they would be otherwise. If they are not,

then the NEMS model is overstating GHG reductions, but our stand-alone analyses

would only be assigning a larger share of reductions to renewables policies.

This last point leads to, perhaps, the most important observation about this analysis,

that we are analyzing what the NEMS model estimates are the effects of economic

activity, relative prices, and state and federal policies on GHG outcomes, not what has

happened historically, nor what the future will likely reveal.

6. Conclusions and policy implications

Although there are many possible approaches that can be used to explain the differences

between AEO GHG emissions forecasts of different vintages, the analytical methods

described above are straightforward and have a long history of use in energy analysis. We

have also compared our regression results across a range of econometric models

(incorporating, for example, different variables and AEO results from different time

frames) and found the overall findings of the different regression models to be broadly

consistent. Our results use secondary data sources where possible to estimate the GHG

impacts of national and state policies.

The Great Recession, and slower subsequent economic growth, was the single largest

contributor to the 2030 emissions decline. But, the long-term effect of lower GDP was

just one of many factors driving the difference between the AEO forecasts. Figure 3

shows that the 46% contribution of end-use energy efficiency policy actions at the state

and federal level (including CAF�E standards) were over twice as important in explaining

GHG emissions projections as the change in GDP forecasts in 2030. Relative prices,

defined as coal-to-gas fuel switching and non-RPS renewables in the electricity sector, as

well as autonomous energy efficiency improvements in the buildings sector, contributed

12% to the 2030 emissions forecast drop. As mentioned above, the unattributed category

also includes increases in oil prices as well as coal-to-gas fuel switching in the industrial

sector, as well as airborne emissions policies.

It is important to understand the sources of changes in GHG forecasts for their role in

planning and management. If energy efficiency policies explain more of the changes in

emissions forecasts, then planners know that their policies are having an impact (at least

in the EIA forecasts). The results also show room for improvement in policies that have

Figure 3. Relative contribution to 2030 GHG emissions decline.
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considerable potential for GHG reductions, but have not been ramped up like other

policies. For example, there is little room to expand the Renewable Fuels Standard in

spite of its contribution to GHG mitigation, given the variation in prices and supplies of

renewable fuel feedstocks like corn. However, cost-effective demand-side management

policies can be ramped up at the state and federal level that could result in further GHG

mitigation while also improving economic outcomes (Nelson et al. 2014).

The bottom line is that despite the lack of a coordinated national GHG policy in the

US, thanks to market forces and actions at the federal, state, and local levels aimed at

enhancing energy security and competitiveness, the likely trajectory of future US GHG

emissions has been substantially lowered. GHG emissions can be reduced due to

thoughtful policy actions rather than considering that GHG reductions are largely

possible only during economic downturns.
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Note

1. A Kaya identity regression model based on Raupach et al. (2007) was also fitted that used GDP,
energy intensity (primary energy demand/GDP), and GHG intensity (GHGs/primary energy
supply) to predict GHG emissions. The regression results were not stable due to colinearity
(high correlation) between the energy intensity and GDP variables.
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Appendix 1. Descriptive Statistics

Variables (not logged, all prices in $2005) N Mean SD Min Max

GHGs 120 6185.62 511.26 5425.5 7950.2

GDP 120 17,478.52 3248.7 12,760.45 25,350.96

Industrial shipments/GDP 120 0.45 0.03 0.37 0.51

Crude oil price 120 80.76 22.36 49.64 122.07

Natural gas price 120 5.98 0.95 3.79 8.59

Coal price 120 1.78 0.12 1.58 2.08

Coal supply (%) 120 0.22 0.01 0.19 0.26

Liquid fuels supply (%) 120 0.38 0.01 0.37 0.4

Natural gas supply (%) 120 0.23 0.01 0.2 0.25

Nuclear supply (%) 120 0.08 0.01 0.07 0.09

Renewables supply (%) 120 0.08 0.01 0.06 0.1

Commercial energy demand (%) 120 0.2 0.01 0.18 0.21

Residential energy demand (%) 120 0.21 0.01 0.2 0.23

Transportation energy demand (%) 120 0.28 0.01 0.27 0.3

Coal generation (%) 120 0.48 0.03 0.42 0.57

Renewables generation (%) 120 0.12 0.02 0.08 0.17

Natural gas generation (%) 120 0.2 0.02 0.14 0.24

Nuclear generation (%) 120 0.18 0.01 0.15 0.2

Residential energy intensity (kBTU/ft2) 120 50.62 4.69 42.1 60.9

Commercial energy intensity (kBTU/ft2) 120 108.12 4.46 101.11 115.06

Industrial energy intensity (kBTU/$ shipments) 120 3.78 0.38 3.12 4.66

Renewable fuels (%) 120 0.06 0.02 0.02 0.11

Light duty vehicle (MPG) 120 31.88 3.78 26.04 38

Commercial truck (MPG) 120 17.54 1.59 14.9 20.3
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