

<u>Economic Benefits</u> Planning and Analysis for Low Emissions Development Strategies

Center for Climate Strategies, Inc. LEDS LAC October 12, 2015

Context: LEDS Competes for Focus

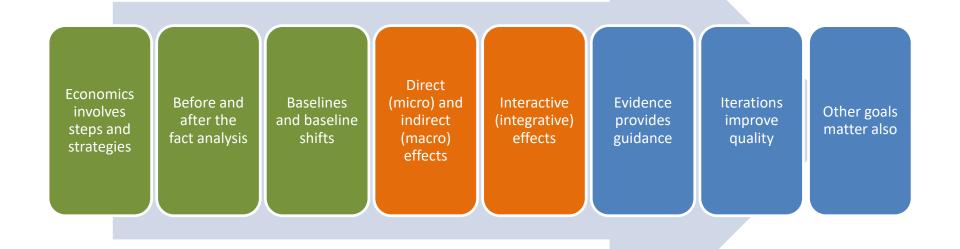
Needs

National vision

Agency priority

Popular support

Demonstrable success


Paradigm shift

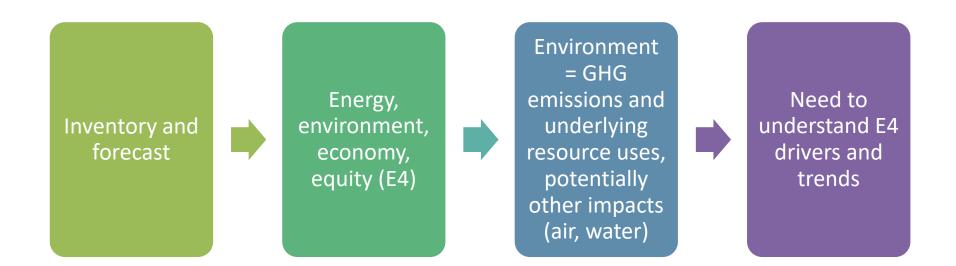
3 | 2/9/2018

www.climatestrategies.us

Concepts

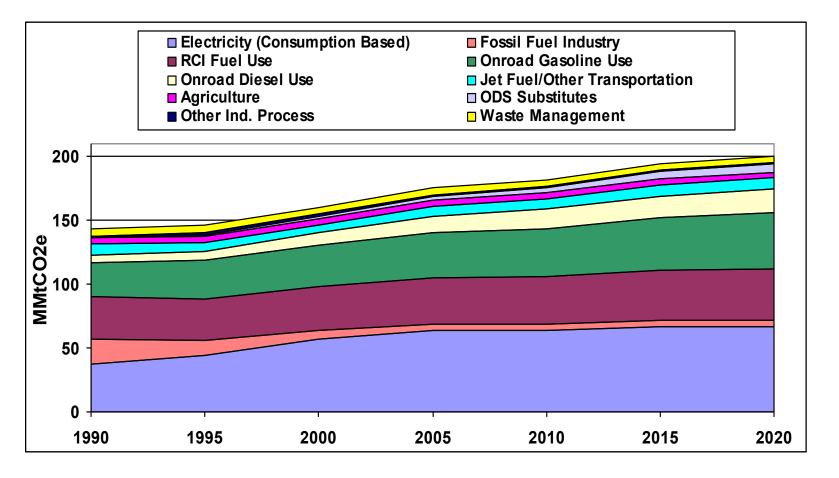
Steps

	Step 1	Organization and Goals	
	Step 2	Baseline Development	
	Step 3	Policy Options Identification	
	Step 4	Policy Screening & Prioritization	
	Step 5	Initial Policy Design Specifications	
	Step 6	Direct (Micro) Impacts Assessment	
	Step 7	Policy Options Integration and Overlap	
	Step 8	Indirect (Macro) Impacts Assessment	
	Step 9	Final Recommendations & Report Transmittal	
	Step 10	Monitoring, Reporting, Evaluation, & Updating	
5 2/9/2	018	www.climatestrategies.us	THE CENTER FOR CLIMATE STRATEGIES

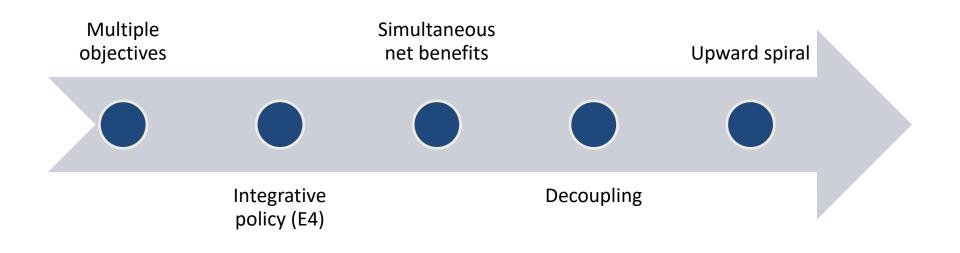


Organization

- Goals and objectives
- Leadership from the top
- Agency capacity
- Work plan
- Technical and facilitative support
- Representative stakeholders
- Expert work group(s)



Baselines



Baselines

Goals

Yes! Climate policy CAN Improve Economy

1. Cost effective actions increase economic efficiency and expansion 2. Energy savings actions cut energy costs, stimulate labor investment 3. Shifts to indigenous vs. imported energy and resources cut capital outflows

6. Labor intensive activities create more jobs, even if at higher cost (up to a point) 5. New investment from outside sources stimulates labor investment at home


Actions supported by local vs. distant supply chains cut job outflows

Evidence

Security Investment and Jobs 2010 - 2030

New Investment B\$ New Employment

*job = employee-year over the period

Today's Exercises

1. Policy Screening

2. Policy Design

3. Micro Analysis

4. Macro Analysis

ER FOR

STRATEGIES

12 | 2/9/2018

www.climatestrategies.us

Options

- Full range of potential options
- Relevant to action and place
- Examples from existing programs
- Also enhancements and innovations
- Inside and outside jurisdiction
- Winning strategies

Success Strategies

HEAT AND POWER

• Renewable and low emitting sources

RESIDENTIAL, COMMERCIAL, INDUSTRIAL, INSTITUTIONAL

• Efficiency, process improvements

TRANSPORTATION AND LAND USE

• Low carbon fuels, vehicle efficiency, community design

AGRICULTURE

• Bio energy, carbon storage, low input farming, feed efficiency

FORESTRY

• Bio energy, carbon storage, land restoration

WASTE

Source reduction, recycling, energy recovery

Options

Policy	Low Carbon Development	Upper Limit (%) of 2035 BAU GHG	Realistic Screening	Micro- economic	Poter Macroecono by 20	mic Impact	Potential Impacts on	2035 Carbon Intensity Screening	Potential Impacts on
Number	Policy	7,210 Tg CO2e BAU GHG	Potential (%) of 2035 BAU GHG	Costs/ Savings Indicator	Gross State Product	Employ- ment	Local Health and Environment	336 g CO2e/ ¥2010	Clean Energy Goals
Group 1: RE	NEWABLE ENERGY								
<u>ES-1a</u>	Renewable Portfolio Standard	3.8%	1.2%	500	+	+	+	4.2	+
<u>ES-1b</u>	Green Power Purchases and Marketing	3.8%	1.9%	400	U	U	+	6.3	+
<u>ES-1c</u>	Grid Based Renewable Incentives or Barrier Removal	0.001%	0.001%	350	U	U	+	0.004	+
<u>ES-1d</u>	Offshore Wind Development Issues	0	0	300	-	-	+	-	+
Group 2: AD	VANCED FOSSIL ENERGY			-					
ES-2a	Advanced Fossil Fuel Technology Incentives, Support, or Requirements	1.1%	0.35%	250	-	-	+	1.2	+
<u>ES-2b</u>	Support Efficiency Improvements at Existing Fossil Fuel Power Plants	0.35%	0.17%	50	+	+	+	0.58	+
<u>ES-2c</u>	Support Repowering of Existing Plants (incentives/barrier removal)	1.7%	0.56%	300	+	+	+	1.9	+

Screening

- List for each sector
- Selection criteria for draft priorities
- Benchmarking or expert judgements
- List revision
- Group balloting
- Top tier, second and third tiers

Minnesota MCA

Minnesota Climate Solutions and Economic Opportunities (CSEO) Project	<u>Decision Criteria</u> ➤	Complexity, Ease of Technical Analysis	GHG Cuts Now and or Later		Cost Effectivenes s \$/GHGs Cut	Jobs, Income, and or Growth	and or	Energy Diversity and or Independenc e	Energy Reliability Now and or Later	Energy Acces and or Affordabilit Y	Health AQ, WQ, or Other	Land, Water, and or Wildlife Conservatio n	Income, Age, Place,		Feasibilty Social/Politi cal	# Ballots	Priority Ranking
2008 Options	Ranking Scheme ≽	or a	or a	or a	or a	or a range/comb	or a	H, M, L, U, or a range/combin ation	or a	or a	or a	or a	or a	or a	or a	10 Ballots/Vote r, 1 For Each Preference	Tiers 1, 2, 3
Option #, Sector	Ranking Scale ➤ Policy Option Description マ	y (+/-)	(+/-)	(+/-) M = x to y (+/-)	H = x to y (+/-) M = x to y (+/-) L = x to y (+/-)	(+/-)	H = x to y (+/-) M = x to y (+/-) L = x to y (+/-)	H = x to y (+/-) M = x to y (+/-) L = x to y (+/-)	(+/-)	(+/-) M = x to y (+/-)	(+/-)	(+/-)	(+/-)	(+/-)	(+/-)		
ES 3	Efficiency Improvements, Repowering and Up Grades to Existing Plants																
ES	Increase RES																
ES	Increase Solar Standard																
ES/RCII	111(d) Scenario (Including Price and Non-Price Mechanisms)																

Minnesota Ballot MCA Results

Policy Number	Decision Criteria >	Ease of Technical Analysis	Total GHG Cuts by 2025	\$ Total Annual (Levelized) Costs	2020 Cost Effectiveness \$/GHGs Cut		Co-benefits 2025	Does the technology exist?	-	Agency experts committed?	# Ballots
	Efficiency Improvements, Repowering and Up Grades to Existing Plants	L	L to H	High		U	U	U	low	PCA	7
	Renewable chemicals or bio-products that displace fossil fuels	low					h	A range		DEED	5
30	Increase RES	high	high	low	high	high	high - fuel	high	medium	PCA	9
31	Water use/management and energy efficiency integration	М					н	M to H		MDH and DNR	6
32	Electric Vehicles/Zero Emission Vehicle Standard									DOT, PCA	3
33	Water Freight/Transportation										
34	Water Use and Treatment									MDH and Met Council	1
35	Increase Solar Standard	М	U	M-H	U	Medium	н	Yes		DEED	2
	111(d) Scenario (Including Price and Non-Price Mechanisms)	unkown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	PCA	2
37	Increase EE Requirement	medium	medium	medium	high	high	high	medium	medium	PCA	3
38	Thermal Renewable Standard	Н	Н	medium	Н	Н	м	high	medium	PCA, DEED	2
39	Incentives and Resources to Promote Thermal Renewables	М	High	medium	Н	Н	м	high	High	DEED, DNR	5
40	Demand/response	М					н	Н	Н		3
41	Distributed Generation										
42	R&D on clean energy technology										
43	Carbon Tax like British Columbia									MPCA	2
44	Building Benchmarking										1
	100% LED streetlights									DOT	3
	Rural Propane Alternatives (ex. Rooftop solar thermal heaters, biomass to dry grains, TBD)									DEED, PCA, DNR	2

CENTER FOR

TRATEGIES

Exercise 1

- Economic decision criteria
 - Measurable & Manageable
- Benchmark sources
- Expert ranking/rating
 - <u>http://www.surveygizmo.com/s3/2361505/LEDS-LAC-Survey-for-</u>
 <u>Exercise-1</u>
 - <u>http://goo.gl/H1PQYK</u>

Policy Design

- Timing
- Level of effort
- Coverage of parties
- Eligibility and definitions
- Type of mechanism(s)
- Sources and uses of funds

Example

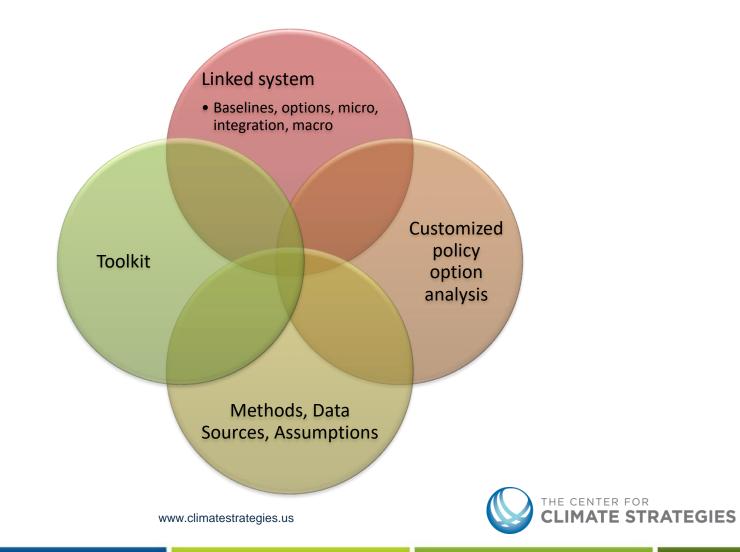
Energy Supply Matrix, Baja, California (MLEDS)

"The current mix power generation relies largely on fossil fuels that generate GHG emissions and significantly deplete air quality. Due to high dependency on oil and the emissions which result from energy production in Baja California, there is a need for a policy that will diversify the energy matrix of the State to include a larger percent of renewable energy sources that do not affect the environment.

The State of Baja California has potential resources that can be utilized as for diversification of energy sources, such as: bioenergy, solar energy, geothermal energy, hydropower, wind power and various forms of ocean energy (tidal, waves and marine currents). The objective of this policy is to diversify the energy matrix, give greater stability, sustainability and increase supply current of energy, reduce hydrocarbons consumption and reduce Greenhouse Gas emissions."

Exercise 2

- RPS
 - Timing: Start, ramp up, stop
 - Level of effort: Metrics and targets
 - Coverage of parties: Implementing parties
 - Eligibility and definitions: Entity type and RE type
 - Policy mechanisms
 - <u>http://www.surveygizmo.com/s3/2361722/LEDS-LAC-Survey-for-Exercise-2</u>
 - <u>http://goo.gl/OBIfEr</u>

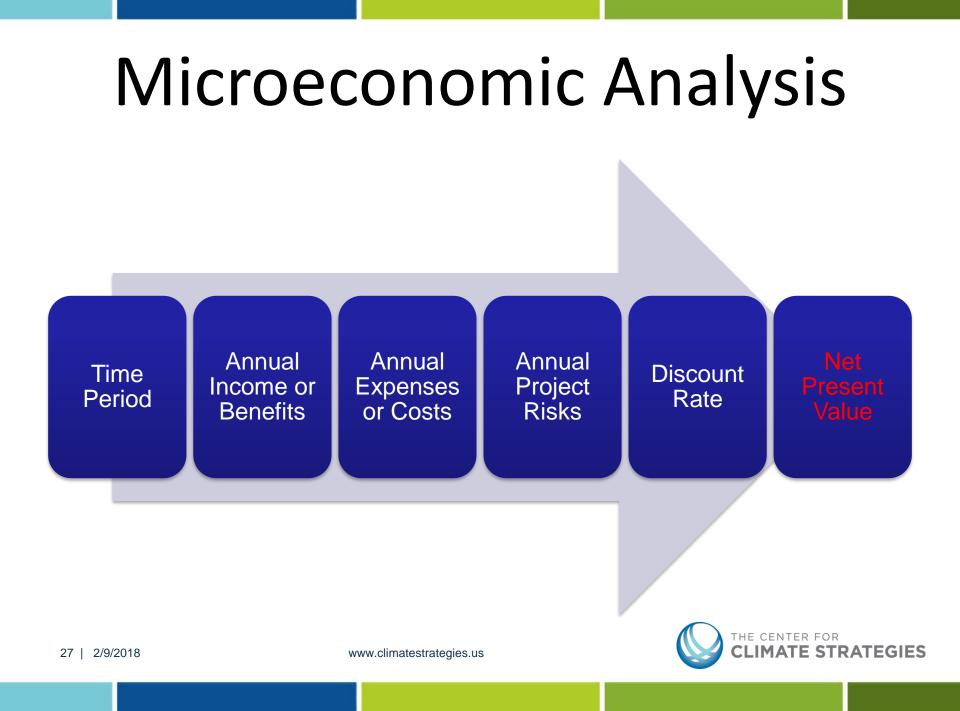

Analysis

Principles and guidelines

- Common assumptions for all sectors
- Common assumptions for each sector
- End user needs
- Capacity constraints
- Templates and tools

Templates

Methods



Methods

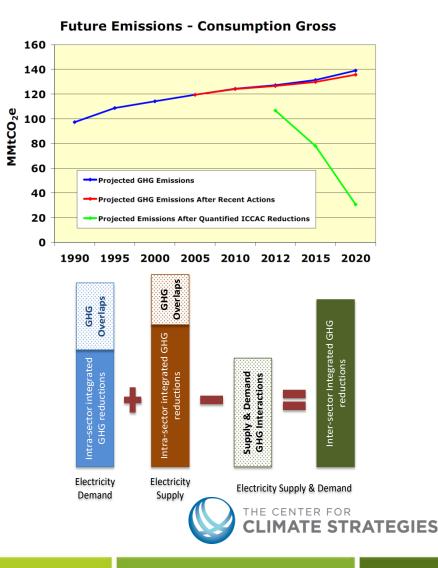
- Worksheet
- Advanced spreadsheet(s)
- Systems database program
- Statistical formula

Micro

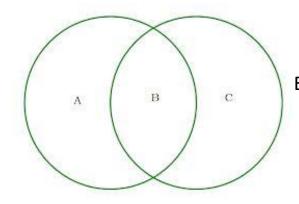
Marginal Resource Mix	All GHG emitting supply sources
Emissions Factors	GHG loading of each unity of supply
Avoided Emissions	GHGs of each unit avoided supply
Avoided and Incremental Costs	Cost/savings of each unit avoided supply
Net Policy Costs/Savings	Net Policy Option Costs/Savings less Baseline Costs
Net Present Value (NPV)	 Sum, from start to end, of annual income and expenses, adjusted for risk, discounted by time period
Cost Effectiveness (CE)	Cost/Benefit, or NPV/GHG Removed or Energy Change
28 2/9/2018	www.climatestrategies.us

Example

	BAU Costs			Net Policy Costs					
	Avoided Due to the Policy	3a. Initial CapEx	3b. Major OH CapEx	3b. Annualized Initial CapEx	3b. Annualized Major OH	3C. O&M Costs (non-energy)	3d. Electricity Value	4. Net Annual Costs	5. Discounted Net Costs
Year	MM\$	MM\$	MM\$	MM\$	MM\$	MM\$	MM\$	MM\$	2012 MM\$
2016	None Identified	\$69	\$0.0	\$8.9	\$0.0	\$0.0	\$0.0	\$8.9	\$7.4
2017	None Identified	\$69	\$0.0	\$18	\$0.0	\$5.8	(\$6.1)	\$18	\$14
2018	None Identified	\$69	\$0.0	\$27	\$0.0	\$13	(\$13)	\$27	\$20
2019	None Identified	\$69	\$0.0	\$36	\$0.0	\$21	(\$20)	\$36	\$26
2020	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$30	(\$28)	\$38	\$25
2021	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$32	(\$29)	\$39	\$25
2022	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$34	(\$30)	\$40	\$24
2023	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$37	(\$31)	\$41	\$24
2024	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$39	(\$32)	\$42	\$24
2025	None Identified	\$0.0	\$0.0	\$36	\$0.0	\$41	(\$33)	\$44	\$23
2026	None Identified	\$0.0	\$22	\$27	\$2.9	\$44	(\$34)	\$39	\$20
2027	None Identified	\$0.0	\$22	\$18	\$5.8	\$46	(\$35)	\$35	\$17
2028	None Identified	\$0.0	\$22	\$9	\$8.7	\$49	(\$36)	\$30	\$14
2029	None Identified	\$0.0	\$22	\$0	\$12	\$51	(\$37)	\$26	\$11
2030	None Identified	\$0.0	\$0.0	\$0	\$12	\$53	(\$38)	\$27	\$11
Sum		\$276	\$89	\$357	\$40	\$496	(\$403)	\$490	\$286


Exercise 3

- RPS
 - Which method(s)
 - Which annual costs and benefits
 - Which data sources for each
 - Key assumptions
 - Current and planned baseline actions
 - <u>http://www.surveygizmo.com/s3/2361419/LEDS-LAC-Survey-for-Exercise-3</u>
 - http://goo.gl/B0x8ZY


Integration

- Initial micro-economic analysis of each policy is done on a "stand-alone" basis.
- This assumes policy implementation all by itself with results calculated against business as usual (BAU) conditions.
- There are both intra-sector and inter-sector overlaps/ interactions to address

Integration

- Reduce the possibility of "double-counting" of GHG reductions and errors in economic impacts
- Double-counting occurs when the two different policies take credit for the "same" GHG reductions
- Double-counting can occur within each sector (<u>intra-</u>) as well as across sectors (<u>inter-</u>; e.g. AFF/WM/TLU/RCII → ES)
- The *net* GHG effect needs to be calculated and one set of results produced during the inter-sector integration analysis.

E.g. Policy effects A & C have an overlap = Area B

Steps for Overlapping Policy Options

Review the "Marginal Resource Mix," such as for the Electricity Supply system

Aggregate Electricity System Impacts (and other export metrics)

Compare the size of the plan's aggregate electricity system impacts to the BAU marginal resource

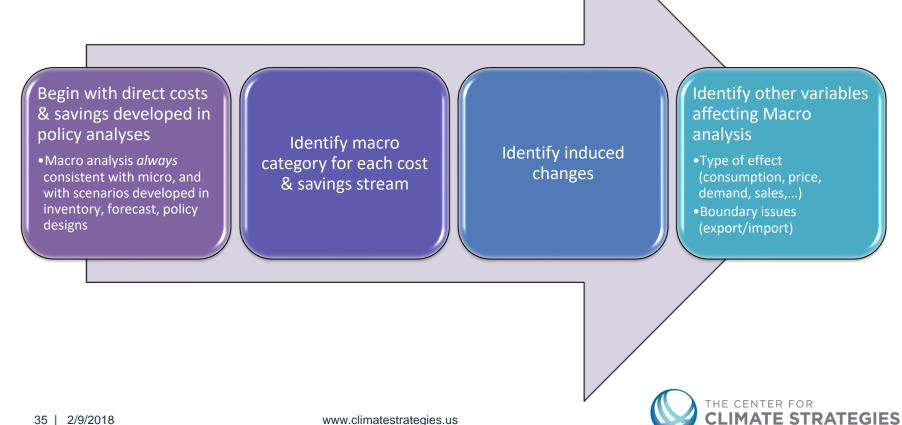
Adjust GHG impacts & costs based on the LCD Plan Marginal Resource Mix

Multiply "Stand-Alone" Results by the ratio of LEDS Plan/Baseline metric

Macroeconomic Analysis

What is Macroeconomics?

Study of Trends in the Larger Economy


- Changes in total economic activity (GDP), total employment (number of jobs), output – how many goods/services are produced
- Impacts of changes in monetary policy, inflation, interest rates
- Understanding how money spent/saved in one sector flows through to affect other sectors of the economy

Difference from Microeconomics:

- Micro: What types of costs/savings can be attributed to implementing a policy? What are the total direct costs/savings to society?
- Macro: Who pays/receives savings? How will those costs and savings affect the larger economy?

Basic Steps in Macroeconomic Analysis

Identify & Quantify Induced Changes

Key Money Concepts of Macro-analysis:

- If consumers spend more on one good/service, they have less to spend elsewhere
- If businesses invest in a new facility, must account for what is displaced. Savings? Other investment?
- Exception: money can leave (through imports) or enter (through exports)
- Must define and model these reactions in analysis

Macroeconomic Example: Manure Methane

<u>Problem</u>: Farm-animal manure emits lots of *methane* (CH_4).

<u>Solution</u>: Install a *digester*, which captures this methane. Once captured, it can be:

Burned on-site for heat and energy, reducing need to buy fuel

Sold on the market as a fuel

Step 1 – Identify Direct Costs & Savings

38 | 2/9/2018

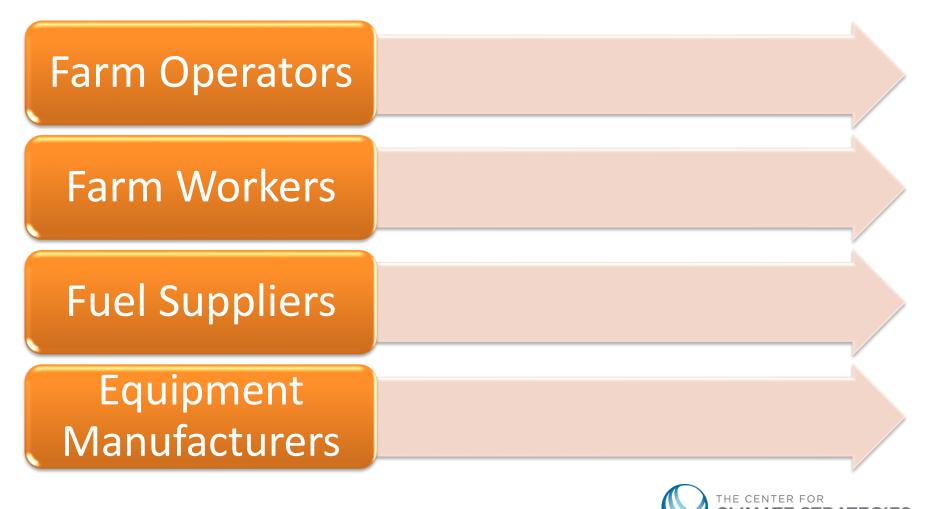
www.climatestrategies.us

Step 1 – Identify Direct Costs & Savings

Step 2 – Identify *Both Sides* of Each Cost or Savings

Cost to Purchase Digester?	Who Spends?Who earns?
Operations and Maintenance Spending?	Who Spends?Who earns?
Less Money Spent to Buy Fuel?	Who Spends?Who earns?
Sales of Surplus Methane?	Who Spends?Who earns?
	THE CENTER FOR

ATE STRATEGIES


www.climatestrategies.us

Step 2 – Identify *Both Sides* of Each Cost or Savings

Cost to Purchase Digester	 Expense incurred by farms, but also Sales and revenue to companies that make digesters
Operations and Maintenance Spending	 Another expense incurred by farms, but also Additional jobs, wages and earnings for workers
Less Money Spent to Buy Fuel	 A savings to farms, but also A loss of sales for the companies selling fuel (usually natural gas)
Sales of Surplus Methane	 Revenue to farms, but also Competes with and reduces sales for companies selling fuel (again, usually natural gas)

Step 3 – Determine the *Response to Change* of Every Affected Party

www.climatestrategies.us

Step 3 – Determine the *Response to Change* of Every Affected Party

Farm Operators

Farm Workers

- Change: Higher capital and labor costs, lower fuel costs, new revenue from methane sales *net gain*Impact: Overall lower costs facilitate competitiveness and growth
- Change: More hiring by farms to meet labor needs to operate digesters
- Impact: More incomes drive more consumer spending on a range of goods and services

Fuel Suppliers

- Change: Reduced sales of fuel
- Impact: Industry shrinks, demanding less of the resources and labor than before

Equipment Manufacturers

- Change: Increased sales of digesters
- Impact: Industry grows, demanding more labor, resources and capital than before

Step 4 – Quantify Impacts

- Like we said before, this analysis requires... LOTS of Data!
- Data needs to be:
 - -Specific to YOUR area no two economies are alike
 - -Built to model the way sectors interact (I/O, CGE, etc.)
- Steps 1, 2, and 3 help to define inputs, but economic model is still necessary to get results

Exercise 4

Reduce Emissions from Semi-Trucks

- **Problem:** Semi-truck freight emits large amounts of GHGs and is a sector that continues to grow.
- **Solution:** Improve fuel efficiency of semi-trucks by installing trailer fairings or trailer skirts.

Identify the costs, savings, and new Revenue
Identify who will receive the costs, savings, and new revenue
Determine the response change of each affected party

Final Results

Topics

- A. Completion of final documentation
- B. Alignment to convening order and work plan
- C. Transmittal to the Convening Authority
- D. Implementation Planning Design
- E. Monitor, Report, and Update
- F. Linkage to Study Tour and Information Exchange

Learning Objectives

Acquire concepts, techniques, and tools to:

- Finalize the LEDS Action Plan (policy recommendations and impact results aligned with set goals and work plan)
- Transition from a LEDS Action Plan to implementation in short, medium and long term
- Monitor, evaluate, and updated progress and plans

Completion of Final Documentation

Table of Contents

Example: Michigan final report

Acknowledgments	ii
Members of the Michigan Climate Action Council	iii
Acronyms and Abbreviations	v
MCAC Recommended Policy Positions on Michigan Climate Action Strategy	x
Executive Summary	ES-1
Chapter 1 – Background and Overview	. 1-1
Chapter 2 – Inventory and Projections of Michigan's GHG Emissions	
Chapter 3 – Energy Supply Sector	. 3-1
Chapter 4 – Market-Based Policies	. 4-1
Chapter 5 – Residential, Commercial, and Industrial Sectors	
Chapter 6 – Transportation and Land Use Sectors	
Chapter 7 – Agriculture, Forestry, and Waste Management Sectors	
Chapter 8 – Cross-Cutting Issues.	

Appendices

A.	Executive Order Establishing the Michigan Climate Action Council	. A-1
	Description of Michigan Climate Action Council Process	
	Members of MCAC Technical Work Groups	
D.	Greenhouse Gas Emissions Inventory and Reference Case Projections	. D-1
E.	Methods for Quantification	E-1
F.	Energy Supply Policy Recommendations	F-1
G.	Recommendations for Market-Based Policies	. G-1
H.	Transportation and Land Use Policy Recommendations	. H-1
	Residential, Commercial, and Industrial Policy Recommendations.	
J.	Agriculture, Forestry, and Waste Management Policy Recommendations	J-1
K.	Cross-Cutting Issues Policy Recommendations	. K-1

Review and Discussion

- Q&A
- Trouble shooting
- Next steps

